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COMMUTATIVE HAIRY GRAPHS AND REPRESENTATIONS OF Out(Fr)

VICTOR TURCHIN AND THOMAS WILLWACHER

Abstract. We express the hairy graph complexes computing the rational homotopy groups of long embeddings (modulo
immersion) ofRm in Rn as “decorated” graph complexes associated to certain representations of the outer automorphism
groups of free groups. This interpretation gives rise to a natural spectral sequence, which allows us to shed some light
on the structure of the hairy graph cohomology. We also explain briefly the connection to the deformation theory of the
little discs operads and some conclusions that this brings.

1. Introduction

In this paper we consider complexes of linear combinations of isomorphism classes of graphs with external
legs (or ”hairs”), such as the following.

(1) , , ,

The differential on these complexes is defined by summing over all ways of expanding a (non-hair-)vertex. More
precisely, due to choices in signs and degrees, the hairy graph complexes come in several variants (which we
denote HGCm,n), depending on a pair of integersm, n. For more details, see section 4.3 below. The hairy graph
homologyH(HGCm,n) is an object of significant interest in algebraic topology,since it computes the rational
homotopy groups of spaces of long embeddingsRm→ Rn modulo immersions in codimensionsn−m ≥ 3 as has
been shown in [11].1 However, our current knowledge of the hairy graph homology is rather limited. Let us just
note that since the differential cannot alter the number of loops or hairs of graphs,the complexes HGCm,n split
into finite dimensional subcomplexes HGCr,h

m,n of fixed loop numberr, and fixed number of hairsh. Furthermore,
up to unimportant degree shifts, the complexes HGCm,n depend onm andn only through their parity, so that there
are only four essentially different cases to consider. Finally, the complexes HGCm,n carry a natural Lie bracket.

The purpose of this paper is twofold. First, we shed some light on the structure of the hairy graph homol-
ogy. Secondly, we show that the complexes HGCm,n may be replaced by somewhat simpler quasi-isomorphic
complexes.

To this end let us recall a more geometric approach to definingmany types of graph complexes. Culler and
Vogtmann [8] defined the so calledouter spaceOSr whose points are isomorphism classes of metrizedr-loop
graphs, i.e., graphs with a non-negative length assigned toeach edge, such that the combined length of any closed
loop is positive.2 A metrized graph is identified with the metrized graph obtained by contracting all edges of zero
lengths.

The space OSr plays a role similar to the classifying space of the group of outer automorphisms of the free
group onr generatorsFr . In particular, a representationV of Out(Fr ) determines a local system on OSr . For any
such local system one may write down a ”decorated” graph complex GCr

V computing the compactly supported
cohomology on OSr with values in the local system.

Now we are ready to state our main results. We begin with the case of even codimensionn−m. LetK be a field
of characteristic zero. Abusing notation we also denote byK the trivial one-dimensional representation of Out(Fr).
We denote byH1 ther-representation of Out(Fr) obtained by pulling back the canonical representation of GL(r,Z)
onKr under the map Out(Fr )→ GL(n,Z). Finally, we define the one-dimensonal representation Det= ∧r H1.

2000Mathematics Subject Classification.57R40; 18D50; 13D03; 19D55.
Key words and phrases.Graph-complexes, spaces of long embeddings, little discs operads, groups of outer automorphisms of free groups.
V.T. acknowledges partial support by the MPIM, Bonn, and theIHES. T.W. acknowledges partial support by the Swiss National Science

Foundation (grant 200021150012) and the SwissMap NCCR, funded by the Swiss National Science Foundation.
1For a weaker range of dimensions this result has been shown earlier in [22, 2].
2We note that our notation OSr is slightly inconsistent with that Culler and Vogtmann, in that their outer space is contractible and comes

with an action of Out(Fr ), while our OSr is the quotient under this action. Unfortunately, Culler and Vogtmann did not coin a catchy name for
this quotient.
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Theorem 1. Let n− m be even. The complexHGCr,h
m,n, r ≥ 2, h ≥ 1, admits a splitting into a direct sum of two

complexesHGCr,h,I
m,n ⊕ HGCr,h,II

m,n such that in the homology one gets the following splitting:

• if n is even, then

(2) H(HGCr,h
m,n) � H(GCr

ShH1
)[nr + (h− 1)(n−m− 2)− 2] ⊕ H(GCr

Sh−1H1
)[nr + (h− 1)(n−m− 2)− 1]

where ShH1 is the h-fold symmetric power of the representation H1 � Kr ;
• if n is odd, then

(3) H(HGCr,h
m,n) � H(GCr

Det⊗ShH1
)[nr + (h− 1)(n−m− 2)− 2] ⊕ H(GCr

Det⊗Sh−1H1
)[nr + (h− 1)(n−m− 2)− 1].

In both cases the Lie bracket with the graph

(4) L =

sends the subcomplexHGCr,h,I
m,n isomorphically toHGCr,h+1,II

m,n (in the homology it maps the repeated summands
H(GCr

ShH1
), or respectively, H(GCr

Det⊗ShH1
), h≥ 1, identically one onto another)3 and sendsHGCr,h,II

m,n to zero.

If the numbern−m is odd, the story is more complicated in that we need to consider representations of Out(Fr )
that do not factor through GL(r,Z). The representations we need are described in [24], from which we recall the
following. Let A be a commutative algebra. Then the group Out(Fr) acts on the Hochschild-Pirashvili homology
of A on a wedge ofr circlesWr . If A is graded, then the Out(Fr) action restricts to each graded component of
the Hochschild-Pirashvili homology. We need the case ofA being the 2-dimensional graded algebra (the dual
numbers)

A = K[x]/x2 = K1⊕ Kx

with x in degree 0. This algebra carries an auxiliary grading by assigning x degree 1. We letBh
r be the respresenta-

tion of Out(Fr) on the piece of auxiliary degreeh and homological degreeh of the Hochschild-Pirashvili homology
of A on a wedge onr circles. These representations may be explicitly computedand have small dimensions, see
[24] for a more detailed discussion.4 With this preparation we can state our second main result.

Theorem 2. Let n−m be odd. The complexHGCr,h
m,n, r ≥ 2, h ≥ 1, admits a decreasing filtration (by defect)

(5) HGCr,h
m,n = Fr,h

0 ⊃ Fr,h
1 ⊃ Fr,h

2 ⊃ . . . ⊃ Fr,h
h ⊃ Fr,h

h+1 = 0,

such that all the terms Fr,hi /F
r,h
i+1, i ≥ 2, are acyclic. Thus the first term E1 of the spectral sequence associated with

this filtration has only two columns E0∗1 = H(Fr,h
0 /F

r,h
1 ) and E1∗

1 = H(Fr,h
1 /F

r,h
2 ) described as follows:

• if n is even, then

(6) E0∗
1 ⊕ E1∗

1 = H(GCr
Bh

r
)[nr + (h− 1)(n−m− 2)− 2] ⊕






H(GCr
K )[nr − 1] for h = 1

0 for h = 2

H(GCr
Bh−2

r
)[nr + (h− 1)(n−m− 2)− 1] for h ≥ 3

;

• if n is odd, then

(7) E0∗
1 ⊕E1∗

1 = H(GCr
Det⊗Bh

r
)[nr+(h−1)(n−m−2)−2]⊕






H(GCr
Det)[nr − 1] for h = 1

0 for h = 2

H(GCr
Det⊗Bh−2

r
)[nr + (h− 1)(n−m− 2)− 1] for h ≥ 3

.

The differential d1 : E0∗
1 → E1∗

1 is trivial for h ≤ 2. In both cases the Lie bracket with the tripod graph

(8) T =

maps Fr,h
i in Fr,h+2

i+1 thus inducing a map between the corresponding spectral sequences. The induced map sends
the column E0∗1 of the(r, h) component identically to the column E1∗

1 of the(r, h + 2) component (identifying the
two repeated summands H(GCr

Bh
r
), or respectively, H(GCr

Det⊗Bh
r
), h≥ 1), and it sends the column E1∗

1 to zero.

In fact, we conjecture that the spectral sequence abuts at the E1 page, so that the hairy graph homology is in
fact isomorphic to the expressions in the Theorem. In case ofevenn − m, the hairy complexes have a similar
filtration by defect. The splitting of Theorem 1 implies the collapse of the associated spectral sequence at the first
pageE1 in this case.

3Note that the Lie bracket withL raises the number of hairsh by one.
4In fact, these examples yield the smallest known representations of Out(Fr ) not factoring through GL(r,Z ).
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Structure of the paper. In section 3 we recall some facts about the Hochschild-Pirashvili homology that will be
crucial for our work. In section 4 we define the decorated graph complexes. Finally, section 6 contains the proofs
of our main results Theorems 1 and 2, along with some concluding remarks.

Acknowledgements.We thank B. Fresse for helpful discussions. V.T. thanks the MPIM, Bonn, and the IHES,
where he spent his sabbatical and where he was working on thisproject, for a partial support and hospitality. T.W.
has been partially supported by the Swiss National Science foundation, grant 200021150012, and the SwissMAP
NCCR funded by the Swiss National Science foundation.

2. Notation

We work over a ground fieldK of characteristic zero unless otherwise stated. All vectorspaces are assumed
to be vector spaces over the ground fieldK. Graded vector spaces are vector spaces with aZ-grading, and we
abbreviate the phrase “differential graded” by dg as usual. We generally use in cohomological conventions, i.e.,
the differentials will have degree+1. In particular the grading that we use for the hairy graph-complex is reversed
compared to the grading of the rational homotopy groups of the spaces of long embeddingsRm → Rn modulo
immersions.5

3. Recollection: Higher Hochschild Homology

Let Fin be the category of finite sets. A right Fin-module is a contravariant functor Fin→ dgVect into the
category of dg vector spaces, and a left Fin-module is a covariant functor Fin→ dgVect.

We will consider the following examples:

• ForX some topological space we can consider the right Fin-modulesending a finite setS to the simplicial
chains on the mapping spaceC(XS). We denote this Fin-module byC(X•).

• To a commutative coalgebraB we assign the right Fin-module sending the finite setS to the tensor product
BS
�

⊗

s∈S B. We denote this Fin-module byB•. Dually, if A is a commutative algebra, then the functor
S 7→ AS

�

⊗

s∈S A describes a left Fin-moduleA•.

The higher Hochschild(-Pirashvili) homologyHHX(B) can be defined as the homology of the complex of ho-
motopy natural transformationsC(X•) → B• [20]. Dually, the higher Hochschild homologyHHX(A) may be
described as derived tensor productC(X•)⊗̄FinA•. We will provide explicit models below. Any mapf : X → Y
induces a mapf ∗ : HHY(B) → HHX(B) (resp. f∗ : HHX(A) → HHY(A)). Two homotopic maps induce the same
map in higher Hochschild homology.

In our case we takeX to be a rose withr petalsWr = ∨rS1. The outer automorphism group Out(Fr) acts onWr

up to homotopy and hence we obtain a representation of Out(Fr) onHHWr (A) andHHWr (B) for all A, B as above.
This yields a rich source of Out(Fr) representations, considered in [24].

3.1. More explicit formulas for graphs. We assume thatA is an augmented differential graded commutative
algebra, and denote bȳA the augmentation ideal. One can then describeHHWn(A) more explicitly as the homology
of the complex

CHWr (A) =
⊕

j1,..., jr

A⊗
r⊗

α=1

(A[1])⊗ jα ,

with differentialdH + dA, wheredA is induced from the intrinsic differential onA and dH is a version of the
Hochschild differential [24]. Concretely, fora0, a j,i ∈ A, for simplicity assumed to have degree 0, we have

dH(a0; a1,1, . . . , a1, j1, . . . , ar,1, . . . , ar, jr )

= (a0a1,1; a1,2, . . . , a1, j1, . . . , ar,1, . . . , ar, jr ) − (a0; a1,1a1,2, . . . , a1, j1, . . . , ar,1, . . . , ar, jr )

± · · · + (−1)(a1, j1a0; a1,1, . . . , a1, j1−1, . . . , ar,1, . . . , ar, jr )

± · · · ± (a0ar,1; a1,1, a1,2, . . . , a1, j1, . . . , ar,2, . . . , ar, jr ) ± (a0; a1,1, a1,2, . . . , a1, j1, . . . , ar,1ar,2, . . . , ar, jr )

± · · · ± (ar, jr a0; a1,1, . . . , a1, j1−1, . . . , ar,1, . . . , ar, jr−1).

5In fact in the hairy graph-complex besides the grading reversion, we also shift degree bym so that HGCm,n is endowed with a natural Lie
bracket corresponding to the Browder operator in the rational homotopy of the spaces of embeddings [11].
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Informally speaking, we may think of thea’s as sitting on a wedge ofr circles, and the differential is the signed
sum of all contractions of spaces between thea’s, multiplying the two elements on either side of the space.

a0

a1,2
a1,1

a2,3

a2,2
a2,1

a3,1

Now supose thatΓ is a graph. Then we may similarly define a complex computing the Hochschild-Pirashvili
homology onΓ as

CHΓ(A) =
⊗

v∈VΓ

A⊗
⊗

e∈EΓ

(

⊕ j≥0(A[1])⊗ j
)

.

We interpret the various factors ofA (resp.A) as “sitting” on the vertices (respectively edges) of the graphΓ.

A
A

A

A

AA

AAA

A

The differential is then again the signed sum of contractions of spaces between decorations, multiplying the dec-
orations accordingly. Note that we quietly assume that an orientation of each edge and orderings of edges and
vertices are chosen to make the order of the tensor products above well defined.

Let e be an edge of the graphΓ, and letΓ/e be the graph obtained by contractinge. Denote the vertices thate
connects byv1, v2, and the corresponding vertex ofΓ/e by v. Then there is a canonical map of complexes

(9) CHΓ(A)→ CHΓ/e(A),

given by projecting the factor of the tensor product corresponding toe to its “constant” piece

⊕ j≥0(A[1])⊗ j → (A[1])⊗0 = K,

and multiplying the decorations ofv1 andv2

A
︸︷︷︸

atv1

⊗ A
︸︷︷︸

atv2

→ A
︸︷︷︸

at v

.

It is not hard to check that the map (9) is a quasi-isomorphism. In fact, zig-zags of edge contractions may be used
to generate the full Aut(Fr ) action onCHWr (A).

Finally, suppose thatA carries in addition a grading by an abelian groupG, not necessarily equal to the co-
homologicalZ-grading. Then the Hochschild-Pirashvili complexes aboveinherit the grading. We denote the
homogeneous subcomplexes of fixed degreeg ∈ G by

CHΓ,g(A),

and the corresponding subspace of the homology by

HHΓ,g(A),

Remark 1. It is well known that the ordinary Hochschild complex of a (dg) commutative algebra carries a natural
commutative and associative product∗sh via the shuffle map, see [18, section 4.2]. One may define a similar
product on the Hochschild-Pirashvili complex, which we denote by the same letter∗sh. Concretely, onCHΓ(A)
the product is obtained by multiplying the decorations on vertices on summing over all ways of combining the
decorations on edges through shuffles.
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3.2. Our main examples. Let Lc
∞(x1, . . . , xN) be the freeL∞ coalgebra cogenerated by elementsx1, . . . , xN of

degreesd = (d1, . . . , dN). We defineAd to be the Chevalley-Eilenberg complex ofLc
∞(x1, . . . , xN), considered as

an augmented differential graded commutative algebra. Concretely, it is a symmetric algebra freely generated by
Lc
∞(x1, . . . , xN) shifted in degree by one.

Ad = S(Lc
∞(x1, . . . , xN)[−1]).

The dg commutative algebraAd (andLc
∞(x1, . . . , xN)) are naturallyZN-graded, according to the number of vari-

ablesx j ( j = 1, . . . ,N) occurring in expressions. FinallyAd is formal, the cohomology being

A′d := H(Ad) = K[y1, . . . , yN]/〈yiy j = 0〉 � K ⊕ Ky1 ⊕ · · ·KyN,

i.e., the algebra generated by elementsy1, . . . , yN of degrees (d1 + 1, . . . , dN + 1) such that all non-trivial products
vanish.

Let us also note that elements ofLc
∞(x1, . . . , xN) can be considered graphically as linear combinations of rooted

trees, with leaves labelled by numbers 1, . . . ,N.

1

1 2 3

3

The differential is the sum of contractions of internal edges. Similarly, elements ofAd can be considered graphi-
cally as “bunches” of such trees.

1 1

4

1

1 2 3

3

The differential is again the sum of contractions of internal edges,where edges incident to the root are now
considered as internal unless they connect a root to one of the leaves.

We finally remark that combining the interpretation ofCHΓ(Ad) asAd-decorations on graphs from the previous
sections with the interpretation of elements ofAd as “bunches of trees”, one sees that elements ofCHΓ(Ad) may
be interpreted as linear combinations of “tree decorated graphs” such as the following.

1
2

2
3
1

3

22

Similarly, elements ofCHΓ(A′d) may be interpreted as linear combinations of “hair decorated graphs” such as the
following.

1

2

3

2

Thanks to the projectionAd → A′d, one has a quasi-isomorphismCHΓ(Ad)→ CHΓ(A′d).
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3.3. Recollection: Hochschild-Pirashvili homology ofAd. Let us specialize further to the caseN = 1, i.e., of
only one generator, which we denote byx. In this case we writeAd = A(d) for short. The Hochschild-Pirashvili
homology ofAd (or, equivalentlyA′d) on Wr (or, equivalently, any graphΓ of loop orderr) has been computed in
[24, section 2]. Below we cite some facts from loc. cit.

3.3.1. d even.In this caseLc
∞(x) is one-dimensional, and one hasA′d = Ad is 2-dimensional. For any connected

graphΓ of loop orderr denote byC•(Γ) its cellular chain complex

0→ C1(Γ)→ C0(Γ)→ 0,

which according to our cohomological conventions is concentrated in degrees−1 and 0. For the degreed of x
even andh ∈ Z we may identify the Hochschild-Pirashvili complex with a symmetric power:

(10) CHΓ,h(Ad) = Sh (C•(Γ)[−d− 1]) ,

where the superscripth refers to the piece of auxiliary degreeh, assigningx degree 1. Indeed, sinceA′d = Ad, only
hairs can appear as decorations. Elements ofC0(Γ) have an odd degreed + 1 and thus can not be repeated in the
symmetric power, which correspond to the fact that only one hair can grow from a vertex. On the other hand, hairs
on an edge can be repeated, which correspond to the fact that in the symmetric power elements ofC1(Γ) have even
degreed and thus can also be taken with any multiplicity. It follows immediately that

HHΓ,h(Ad) = Sh(H•(Γ)[−d− 1]) = Sh(H1(Γ)[−d]) ⊕ H0(Γ)[−d− 1] ⊗ Sh−1(H1(Γ)[−d]).

Of course, in our exampleH0(Γ) = K andH1(Γ) = Kr , but we will keep the above notation for reasons apparent
later. The action of Out(Fr) in this case factors through the obvious action of GL(r,Z) on H1(Γ) � Kr .

3.3.2. d odd. If d is odd, thenLc
∞(x) is infinite-dimensional, however with two-dimensional cohomology given

by the cofree Lie coalgebra cogenerated byx. Let Γ be a finite connected graph of loop orderr. In case of oddd
neither the complexCHΓ(Ad), norCHΓ(A′d) can be expressed viaC•(Γ). In order to compute their cohomology we
consider the special caseCHWr (A′d). Its componentCHWr ,h(A′d) is a two-term complex that may be identified with
the de Rham map on ann-dimensional odd vector space

(11) 0→
⊕

l+2l′=h

Sl(H1(Wr )[−d]) ⊗ Sl′ (H1(Wr )[−2d])
ddR
−−→

⊕

l+2l′=h−1

H0(Wr )[−d− 1] ⊗ Sl(H1(Wr )[−d]) ⊗ Sl′ (H1(Wr )[−2d]) → 0.

If we denote a basis ofH1(Wr )[−d] by variablesy j of degreed and a basis ofH1(Wr)[−2d] by variablesθ j of
degree 2d, and if we interpret the spaces in the complex above as polynomials iny j andθ j , then the “de Rham”
differential ddR is given by the formula

(12) ddRf(y1, . . . , yn, θ1, . . . , θn) =
n∑

j=1

yj
∂

∂θj
f(y1, . . . , yn, θ1, . . . , θn).

The first term of this complex is spanned by graphsWr that have only edges decorated by hairs, the second term
being spanned by similar graphs whith the only vertex ofWr decorated by a hair. A monomialθkj should be

understood as thej-th circle having 2k hairs; and a monomialy jθ
k
j should be understood as thej-th circle having

2k+ 1 hairs.
We will set

Bh,I
r,d = ker(ddR) Bh,II

r,d = coker(ddR).

Both Bh,I
r,d andBh,II

r,d are Out(Fr)-modules via the Out(Fr)-action on the Hochschild-Pirashvili homology. Note that
there is also a natural action of GL(r,Z) on these spaces. However, the Out(Fr )-action does not in general factor
through the GL(r,Z)-action. There is a filtration (called the Hodge filtration)on the above modules, such that the
induced Out(Fr )-action on the associated graded spaces factors through GL(r,Z), see [24] for details. In fact the
obvious GL(r,Z) action that one can see is the action on the associated graded spaces.

Furthermore one can see thatBh,I
r,d � Bh+2,II

r,d [2d + 1] since the kernel and cokernel of the de Rham differential

can be identified. Concretely, an isomorphismBh+2,II
r,d → Bh,I

r,d[−2d − 1] is given by the operator (12). Finally, the
odd numberd matters only in providing a global degree shift. We will set

Bh
r := Bh,I

r,1[h]

so thatBh
r is concentrated in degree zero. Thus one has

Bh,I
r,d � Bh

r [−hd].
6



4. Outer space and “decorated” graph complexes

4.1. Outer space and coefficient systems.A metrized graph is a combinatorial graph together with the assign-
ment of a non-negative number (the “length”) to each edge, sothat the sum of the lengths of the edges of any closed
loop is positive.6 The (quotient of the) outer space OSr defined by Culler and Vogtmann [8] is the quotient of the
space of isomorphism classes of connected metrizedr-loop graphs, obtained by identifying a metrized graph with
the graph obtained by contracting all edges of zero lengths.The space OSr is naturally an open orbi-cell complex.
Its (open) cell structure is neatly encoded in the followingcategory. Define the objects of the categoryGrr to be
r-loop graphs (not isomorphisms classes of graphs), and the morphisms to be generated by the following maps of
graphs:

• Isomorphisms of graphs.
• Sub-forest contractions.

Then thed-dimensional orbicells of OSr correspond to isomorphism classes ofGrr represented by graphs withd
edges. The attachment maps between orbicells are given by the arrows ofGrr between these isomorphism classes.

The space OSr plays a role similar to the classifying space of the group of outer automorphisms of the free group
onr generatorsFr . More concretely, one may define a spaceOr whose points are isomorphism classes of metrized
graphs, with a homotopy class of a map from a wedge product ofr circles, inducing an isomorphism onπ1. One
again identifies a metrized graph with the graph obtained by contracting all edges of length 0. By precomposing
the map from the wedge of circles accordingly, the group Out(Fr) acts onOr . The stabilizer subgroup may be
identified with the automorphism group of the metrized graphand is hence finite.

The spaceOr has an open cell complex structure, the cells correspondingto isomorphism classes of (non-
metrized) graphs. We may again organize the cells into a categoryGrxr whose objects are graphs with a homotopy
class of a map from∨rS1, inducing an isomorphism onπ1. The morphisms are generated by isomorphisms of
graphs and sub-forest contractions. Again we have an actionof Out(Fr) onGrxr by pre-composing the maps from
∨rS1 accordingly. Finally we may recoverGrr as the quotient ofGrxr , and denote the forgetful functor by

(13) π : Grxr → Grr = Grxr/Out(Fr).

We are interested in studying local systems on outer space. The corresponding data may be nicely organized
using the categoryGrr .

Definition 1. We define a coefficient system as a functor

Grr → dgVect.

We say that the coefficient system is a homotopy local system if the images of all arrows are quasi-isomorphisms.
We say it is a local system if the images of all arrows are isomorphisms.

We are interested mainly in the following examples.

Example 1. The functors

C• : Grr → dgVect H• : Grr → dgVect

Γ 7→ C•(Γ) Γ 7→ H•(Γ)

assigning to a graph its cellular chain complex (respectively its homology) is a coefficient system.

Example 2. The functor

Det : Grr → Vect

Γ 7→ ∧r H1(Γ)

defines a (one dimensional) coefficient system.

Example 3. Let A be a (dg) commutative algebra. Define the functor

HHA : Grr → gVect

which assigns to a graphΓ the Hochschild-Pirashvili homologyHHΓ(A). Similarly, define the functor

CHA : Grr → dgVect

assigning toΓ the Hochschild-Pirashvili complexCHΓ(A). In particular,HHA is the composite ofCHA and the ho-
mology functor fromdgVect to gVect. In caseA is G-graded, for anyg ∈ G we similarly define the functorsHHg

A,
CHg

A assigning toΓ theg-partHHΓ,g(A), respectively,CHΓ,g(A), of the higher Hochschild homology/complex.

6We allow in particular graphs with short loops, i.e., edges connecting a vertex to itself.
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Example 4. More generally, letV be any representation of Out(Fr). Then a local system can be constructed by
sending a graphΓ ∈ obGrr to the vector space





⊕

Γ′∈obπ−1(Γ)

V





Out(Fr )

whereπ is as in (13) Out(Fr ) acts onV and simultaneously by permuting the summands according to the action
onπ−1(Γ).

Conversely, given a local system on outer space as in the above definition, one may recover a representation of
Out(Fr) as follows: First, one defines the fundamental groupπ1(Grr ) as the group of homotopy classes of zigzags
of arrows

Wr → · ←Wr

whereWr is a wedge ofr circles, considered as a graph. Two such zigzags are homotopic if the “space between
them” may be triangulated by commutative diagrams, cf. the similar Definition [3, III.C Definition 3.5]. Clearly,
any local system yields a representation ofπ1(Grr ), and one can check thatπ1(Grr ) = Out(Fr ).

Finally, let us note that one can (of course) define direct sums and tensor products of local systems in the
obvious way.

4.2. Decorated graph complexes.Suppose we are given a coefficient system

F : Grr → dgVect

as above. Given a graphΓ, let us denote the full subcategory ofGrr whose objects are isomorphic toΓ by Gr[Γ]
r .

Of course the functorF restricts to a functor

F |Gr[Γ]r
: Gr[Γ]

r → dgVect.

Furthermore, we consider the functor
Or : Gr[Γ]

r → gVect

assigning to a graphΓ the one-dimensional graded vector space

Or(Γ) = (K[1])⊗|EΓ|,

whereEΓ is the edge set ofΓ. An isomorphismf : Γ → Γ′ is sent byOr to the map of one-dimensional vector
spaces obtained by permuting the factors in the tensor product according to the edge permutation induced byf .
(Concretely, choosing a basisOr( f ) acts by multiplication by±1.) This functors encodes possible choices for the
orientation of the orbicells in OSr .

Then define the vector space
V[Γ] = colim

(

Or ⊗ F |Gr[Γ]r

)

as the colimit of the corresponding sub-diagram ofOr ⊗ F. Note thatGr[Γ]
r is a connected groupoid, thus this

colimit is isomorphic to(Or(Γ) ⊗ F(Γ))GΓ , whereGΓ is the group of symmetries ofΓ.
Then we define a graph complexGr

F as follows. As a graded vector space

Gr
F = ⊕[Γ]V[Γ] ,

where the sum ranges over isomorphism classes ofr-loop graphs. The differential is defined as

(14) d(Γ, ε ⊗ v) = (Γ, ε ⊗ dF(Γ)v) +
∑

e∈EΓ

(

ce(Γ),Or(ce)(ε) ⊗ F(ce)(v)
)

,

where the sum ranges over edges of the graphΓ, ce is the morphism inGrr contracting the edgee, and

Or(ce) : Or(Γ) = (K[1])⊗|EΓ| → Or(ce(Γ)) = (K[1])⊗|Ece(Γ)|

is the morphism of degree one of one-dimensional vector spaces corresponding to removing the factor correspond-
ing to the edgee. (Concretely, picking a basis,Or(ce) acts by multiplication by an alternating sign ase ranges over
the edges ofΓ.)

Finally, we define the dual graph complex

GCr
F = (Gr

F )∗.

Remark 2. A functor F : Grr → dgVect is what is called acellular orbi-cosheafon OSr . The complexGr
F

computes theBorel-Moore homologyof OSr with coefficients inF [9, Section 6.2], [17]. The dual graph complex
GCr

F computes thelocally compact cohomologyof OSr with coefficients in thecellular orbi-sheaf F∗ : Grop
r →

dgVect – the objectwise dual ofF.
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4.3. Hairy graph complexes – Standard definition. The hairy graph complexes HGCm,n are combinatorial com-
plexes of formal series of graphs with vertices of valence 1 (hairs) or valence≥ 3 (internal vertices) as depicted in
(1). They arise in the study of the deformation theory of theEn operads that we briefly review in Section 8.

Each complex HGCm,n is spanned by connected graphs having some set ofexternal verticesof valence 1, and
some set ofinternal vertices. The set of external vertices, which are also called hairs, must be non-empty. We
also assume that all internal vertices are of valence≥ 3. We allow graphs to have multiple edges and loops (edges
joining a vertex to itself). For such a graph define itsorientation setas the union of the set of its external vertices
(considered as elements of degreem), the set of its internal vertices (considered as elements of degreen), and
the set of its edges (considered as elements of degree (1− n)). By anorientationof a graph we will understand
ordering of its orientation set together with an orientation of all its edges. Two such graphs areequivalentif there
is a bijection between their sets of vertices and edges respecting the adjacency structure of the graphs, orientation
of the edges, and the order of the orientation sets. The spaceof HGCm,n is the quotient space of the vector space
freely spanned by such graphs modulo the orientation relations:

(1) Γ1 = (−1)nΓ2 if Γ1 differs fromΓ2 by an orientation of an edge.
(2)Γ1 = ±Γ2, whereΓ2 is obtained fromΓ1 by a permutation of the orientation set. The sign here is the Koszul

sign of permutation.

The differential∂Γ of a graphΓ ∈ HGCm,n is defined as the sum of expansions of its internal vertices. The
orientation set of a new graph is obtained by adding the new vertex and the new edge as the first and second
elements to the orientation set, and by orienting the new edge from the old vertex to the new one. We define the
degree of a graph as the sum of degrees of the elements from itsorientation set minusm. We need this shift bym
to unable the complex HGCm,n with the dg Lie algebra structure, which is related to the Browder operator in the
rational homotopy of the spaces of long embeddings modulo immersions and also appears naturally in the operad
deformation theory [11, 23].

Combinatorially, the Lie bracket connects a hair of one graph to an internal vertex of another graph in all
possible ways as indicated in the following picture.

(15)





Γ
,
Γ′




=
∑

Γ

Γ′

∓
∑

Γ′

Γ
.

4.4. Hairy graph complexes as decorated graph complexes.The hairy graph complexes HGCm,n from the
previous section split into direct products of subcomplexes HGCr,h

m,n of fixed loop numberr and fixed number of
hairsh, so that

HGCm,n =
∏

r≥0
h≥1

HGCr,h
m,n.

One easy but crucial observation is that the pieces HGCr,h
m,n, r ≥ 2, h ≥ 1, may be equally well defined as

decorated graph complexes. More concretely, forn−meven note that hairs are odd objects, and hence there are no
vertices with multiple hairs in graphs in HGCr,h

m,n. For r ≥ 2 each hairy graphΓ ∈ HGCr,h
m,n thus consists of a “core

graph” of vertices that have at least 3 non-hair neighbors, connected by strings of hairs as the following picture
illustrates.

︸                   ︷︷                   ︸

hairy graph

↔

decorations
︸                          ︷︷                          ︸

core

Comparing this to the graphical interpretation for the Hochschild-Pirashvili complex of a graph from sections 3.1
and 3.2, we see that the complex HGCr,h

m,n essentially agrees with the complex GCr
F for F the coefficient system

given by the Hochschild-Pirashvili complex as in Example 3.More precisely, taking into account the degrees and
signs we find that ifn, mare even andr ≥ 2 then

(16) HGCr,h
m,n = GCr

CHh
An−m−2

[nr +m− n].

9



If n andm are odd, then additional signs in the definition of HGCm,n yield the identification

(17) HGCr,h
m,n = GCr

CHh
An−m−2

⊗Det
[nr +m− n].

where Det is the coefficient system from example 2.
For n − m odd the hairs on hairy graphs are even objects. In particular, hairy graphsΓ ∈ HGCr,h

m,n for r ≥ 2
may contain multiple hairs at a vertex, and also tree-like “antennas” as in the following example. Still, recursively
cutting the antennas we may view each hairy graphΓ ∈ HGCm,n as a “core” graph, whose edges are decorated by
strings of bunches of “antennas”, as the following picture shall indicate.

︸                                  ︷︷                                  ︸

hairy graph

↔

decorations

︸                                    ︷︷                                    ︸

core

Comparing this again to the definition of the Hochschild-Pirashvili complex for graphs from sections 3.1 and 3.2,
we can readily identify

(18) HGCr,h
m,n = GCr

CHh
An−m−2

[nr +m− n]

for n even,modd,r ≥ 2 and

(19) HGCr,h
m,n = GCr

CHh
An−m−2

⊗Det
[nr +m− n]

for n odd,m even andr ≥ 2.
For the purposes of this paper, the reader may take (16)-(19)as the primary definitions of the hairy graph

complexes. The only downside is that the Lie bracket on HGCm,n is not readily visible using this definition.
Furthermore, the above definitions do not capture the loop ordersr = 0 andr = 1. Fortunately, in loop order

≤ 1 the hairy graph cohomology is known, with the following result [2, Proposition 3.3].

Theorem 3. The zero-loop and one-loop pieces H(HGC0
m,n) and H(HGC1

m,n) of the hairy graph cohomology satisfy

H(HGC0
m,n) =






K for n−m even

K for n−m odd,

and

H(HGC1
m,n) =

∏

k≥1
k≡Ln+1 mod2L

K

· · ·

(k vertices),

where L= 1 if n −m is even, and L= 2 if n −m is odd.

5. Proof of Theorem 1

Applying (16)-(17) to the equivalence of coefficient systems (10) in case of even codimensionn−m, we express
the hairy graph-complexes as follows

(20) HGCh,r
m,n � GCr

Det⊗n⊗Sh(C• [−n+m+1])[nr +m− n],

whereC• : Grr → dgVect is the coefficient system from Example 1.
Denote byC̃• the coefficient system assigning toΓ ∈ Grr the kernel of the augmentation map

(21) π : C•(Γ)→ K � H0(Γ).

Lemma 1. There is a natural isomorphism of coefficient systems (i.e., functorsGrr → dgVect)

K ⊕ C̃• � C•.
10



Proof. In order to show this splitting we have to construct a sections: K → C• to the projectionπ : C• → K. On
a graphΓ this section

H0(Γ) � K→ C0(Γ)

sends the generator 1 to
1

2r − 2

∑

v∈VΓ

(val(v) − 2) · v.

Hereval(v) stays for the valence of a vertexv, andVΓ (below, respectively,EΓ) is the set of vertices (respectively,
edges) ofΓ. One has that the sum of coefficients

∑

v∈VΓ(val(v) − 2) = 2|EΓ| − 2|VΓ| which is minus double
Euler characteristic ofΓ, i.e. 2r − 2. The additional prefactor (val(v) − 2) makes the transformation natural inΓ.
Concretely, the contraction of an edge between verticesv andv′ produces a vertexw such that

val(v) − 2 = (val(v) − 2)+ (val(v′) − 2).

�

Corollary 1. The coefficient system C• : Grr → dgVect is formal, i.e. there is a natural quasi-isomorphism:

H•
∼
⇒ C•.

Proof. On a graphΓ the natural transformation is defined as follows. The map

H1(Γ) = ker(C1(Γ)→ C0(Γ)) →֒ C1(Γ)

is the natural inclusion. The maps: H0(Γ) � K→ C0(Γ) is as defined in the proof of the lemma above. �

This formality and essentially equivalent to it the splitting from Lemma 1 is the main reason for the splitting in
the hairy graph-homology. Indeed, the splitting of the lemma implies the splitting of the coefficient system:

(22) Sh(C•[−n+m+ 1]) � Sh(K[−n+m+ 1] ⊕ C̃•[−n+m+ 1]) �

Sh(C̃•[−n+m+ 1]) ⊕ Sh−1(C̃•[−n+m+ 1])[−n+m+ 1].

The complexes HGCh,r,Im,n and HGCh,r,II
m,n are defined as the direct summands of HGCh,r

m,n arising through this splitting
into these two coefficient systems and isomorphism (20). Since these coefficient systems are formal, one has

H(HGCh,r,I
m,n ) = H(GCr

Det⊗n⊗Sh(C̃• [−n+m+1]))[nr +m− n] =

= H(GCr
Det⊗n⊗Sh(H1[−n+m+2]))[nr +m− n] = H(GCr

Det⊗n⊗ShH1
)[nr + (h− 1)(n−m− 2)− 2].

And similarly for the second summand,

H(HGCh,r,II
m,n ) = H(GCr

Det⊗n⊗Sh−1H1
)[nr + (h− 1)(n−m− 2)− 1].

The mapπ : C• → K can be extended as derivation to the symmetric power ofC•[−n+m+ 1] defining a map
of coefficient systems

(23) Dπ : Sh+1(C•[−n+m+ 1])⇒ Sh(C•[−n+m+ 1])[−n+m+ 1].

Proposition 2. The map1
2[L,−] : HGCh,r

m,n→ HGCh+1,r
m,n [−n+m+ 1] in view of identification(20) is described as

the map

GCr
id⊗Dπ

: GCr
Det⊗n⊗Sh(C• [−n+m+1])[−n+m+1] → GCr

Det⊗n⊗Sh+1(C• [−n+m+1])

induced by the map Dπ of coefficient systems.

Proof. Indeed, the Lie bracket operation [L,−] on graphs is combinatorially the operation of adding one additional
hair at a vertex, i.e.,

[L, Γ] = 2
∑

v∈VΓ

Γ ∪ (hair atv).

The coefficient 2 appears since each of two vertices ofL contributes. Dually, this operation is the sum of cuttings
off hairs from one of the vertices, which in terms of maps of coefficient systems is exactlyDπ. �

To finish the proof of the theorem we notice that the mapDπ of coefficients is compatible with the splitting (22).
�
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6. Proof of Theorem 2

We first define the filtration (5) on the hairy graph-complex. We say that a hairy graph is of defect zero if it is
obtained by attaching only uni-trivalent trees and only to the edges of its core graph. Otherwise we say that a hairy
graph has defectk > 0 if it is obtained from a graph of defect zero with the same core by contractingk internal
edges. For example, the graph below has defect 4.

We define the termFh,r
i of the filtration to consist of the elementsx ∈ HGCh,r

m,n such that bothx and dx are
linear combinations of graphs of defect≥ i. This filtration is induced by the Postnikov filtration in thecoefficient
systems. Recall that for a cochain complex (C, d), its k-th Postnikov termPok(C) is the subcomplex ofC:

(Pok(C))i =






Ci , i ≤ k;

d(Ci), i = k+ 1;

0, i > k+ 1.

This filtration is functorial and therefore induces a filtration Po•(F) on any coefficient systemF : Grr → dgVect
and thus on any graph-complexGF . On the dual complex GCrF = G∗F one considers the dual “orthogonal”
filtration. One has thatPok(C)/Pok−1(C) is a two term complex whose cohomology is concentrated in degreek
and is exactlyHk(C). Moreover, one has a functorial inC quasi-isomorphism

Hk(C) →֒ Pok(C)/Pok−1(C).

This implies that the spectral sequence associated with theinduced filtation in the graph-complex GCr
F has as

its first termH(GCH(F)). Applying this general construction to HGCh,r
m,n described as (16)-(19) and knowing the

fact that the homology ofCHh
An−m−2

is concentrated only in two degrees, see Subsubsection 3.3.2, we get the
statements (6) and (7) of the Theorem.

To see thatd1 is trivial in caseh = 1, we notice that up to a shift of degree the complex HGC1,r
m,n depends only

on the parity ofn. Thus we get the same splitting as in the case ofn−m even, which implies the collapse of the
spectral sequence atE1.

In caseh = 2, the spectral sequence obviously abuts atE1 as the latter one has only one non-trivial column.
Next consider the claim of Theorem 2 that the Lie bracket withthe tripod graphT (8) sendsFh,r

i to Fh+2,r
i+1 . The

operation of taking the Lie bracket [T,−] is combinatorially the addition of a tripod to each vertex in turn, minus
the attachment of a tripod at hairs i.e.,

[T, Γ] = 3
∑

v∈VΓ

Γ ∪ (tripod atv) −
∑

h∈HΓ

Γ ∪ (tripod ath).

Pictorially, these two operations read

· · ·

7→

· · · · · ·

7→

· · ·

(24)

cf. also the graphical description of the Lie bracket (15). This operation increases the defect by 1 (and the number
of hairs by 2). Moreover, sincedT = 0, one hadd[T, x] = [T, dx]. Thus if dx is a linear combinations of graphs of
defecti, thend[T, x] = [T, dx] is the sum of graphs of defecti + 1, which finishes the proof that [T,−] sendsFh,r

i

to Fh+2,r
i+1 .

Similarly to [L,−] (see Proposition 2), the map [T,−] can also be described in terms of maps of coefficient
systems. It is easier to do so it for the dual coefficient systems. LetCn−m−2, respectivelyC′n−m−2 be the coalgebra
dual toAn−m−2, respectivelyA′n−m−2. We consider the dual coefficient systems

CHh
Cn−m−2

: Grop
r → dgVect,

CHh
C′n−m−2

: Grop
r → dgVect

12



defined as objectwise dual ofCHh
An−m−2

, respectivelyCHh
A′n−m−2

. The operation [T,−] can be extended to a map of
coefficient systems

(25) [T,−] : CHh
Cn−m−2

⇒ CHh+2
Cn−m−2

by the same pictorial formulas (24). We will consider the restriction of (25) on the quasi-isomorphic subsystem
CHh

C′n−m−2
⊂ CHh

Cn−m−2
. We have to show that the induced map of the defect zero homology (coefficient system) of

CHh
Cn−m−2

to the defect one homology (coefficient system) ofCHh+2
Cn−m−2

is an isomorphism. Since all the restriction
maps in the coefficient systems are quasi-isomorphisms, it is enough to checkthis statement only for one graph
that we choose to be the simplest one, i.e.Wr .

The complexCHWr ,h(C′n−m−2) is dual to (11). It has length two and can also be described asthe de Rham map

(26) 0→
⊕

l+2l′=h−1

Sl(H1(Wr )[n−m− 2]) ⊗ Sl′ (H1(Wr )[2n− 2m− 4])
ddR
−−→

⊕

l+2l′=h

H0(Wr )[n−m− 1] ⊗ Sl(H1(Wr )[n−m− 2]) ⊗ Sl′ (H1(Wr )[2n− 2m− 4])→ 0.

Here we denote the basis ofH1(Wr )[n−m− 2] by variablesy j and a basis ofH1(Wr )[2n− 2m− 4] by variables
θ j . We interpret the spaces in the complex above as polynomialsin y j andθ j , then the dual “de Rham” differential
ddR is given by the formula

(27) ddRf(y1, . . . , yn, θ1, . . . , θn) =
n∑

j=1

θj
∂

∂yj
f(y1, . . . , yn, θ1, . . . , θn).

The second termX2 of this complex is spanned by graphsWr that have only edges decorated by hairs (graphs
of defect zero), the first termX1 being spanned by similar graphs with the only vertex ofWr decorated by a hair
(graphs of defect one). As before a monomialθkj should be understood as thej-th circle having 2k hairs; and a

monomialy jθ
k
j should be understood as thej-th circle having 2k+ 1 hairs.

Define a mapΨ : X2→ CHWr ,h+2(Cn−m−2) by sending each graph to the sum obtained by attaching two hairs at
one of the internal vertices, i.e. either in the only vertexv of Wr or in the base of one of the hairs. It is easy to see
that ([T,−]|X2 − d ◦ Ψ) is described as attachment of a hair inv, then taking the differential inCHWr ,h+1(C′n−m−2)
and then again attachment of a hair inv. Thus this map abuts inCHWr ,h+2(C′n−m−2) ⊂ CHWr ,h+2(Cn−m−2). This map
is essentially ddR that provides an isomorphism in homology: between ker ddR and coker ddR. �

Remark 3 (Hodge filtration onHH(Ad)). Note that ford = n − m odd the coefficient systemHH(Ad) originates
from a representation of Out(Fr ) that does not factor through GL(r,Z) in general. However, we recall from [24]
or Subsection 3.3 that there is a filtration (called Hodge filtration therein) on the Hochschild-Pirashvili homology
HH(Ad), such that the associated graded does factor through the GL(r,Z)-action onH1. It follows that all the
hairy graph cohomology may be considered as a subquotient ofthe decorated graph cohomology induced by
representations of GL(n,Z) (on H1). It might thus be of interest to study these decorated version in more detail.

6.1. Consequences and discussion.Theorems 1 and Theorem 2 have interesting consequences for the structure
of the hairy graph cohomology. First, a copy of the non-hairygraph cohomology embeds intoH(HGCm,n) in both
casesn − m even andn − m odd. Secondly, the remaining classes “come in pairs”. In thecasen − m even the
pairing is realized directly by the bracket with the line graph L. This is illustrated on a computer generated table
of H(HGCm,n) in Figure 1.

In casen−m odd, we only know for sure that there is a spectral sequence atsome of whose page the classes
cancel, cf. [23]. However, looking at the cancellation pattern in the computer generated table ofH(HGCm,n) in
Figure 2, we see that in small degrees the cancellation always seems to happen on theE2 page, and is given by the
bracket with the tripod graphT.

6.2. Remark: String links and a “colored” variant. The construction of the spectral sequences above can be
extended to more general “hairy” graph complexes considered in the literature. For example, it is shown in [21]
that under suitable hypothesis the rational homotopy of thespace of long embeddings (modulo immersions) of
N “strings” of dimensionsm1, . . . ,mN in Rn can be expressed through the graph cohomology of a hairy graph
complex HGCm1,...,mN;n, generalizing the complex HGCm,n arising in the caseN = 1. Similar graph-complexes
were also considered in [5, 6].7 The complex HGCm1,...,mN;n differs in so far that hairs areN-colored, with the

7In these works the construction is more general on internal vertices, allowing any cyclic operad as input (commutative operad in our case),
but slightly more restrictive on the hair vertices, allowing only even number of colors of the same degrees – which are basis elements of a
symplectic vector space.
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1 2 3 4 5 6 7 8
9 116 116

8 115

7 112 112

6 111

5 18 111

4 18

3 14 17

2
1 10 11 11 14 11 11, 14

1 2 3 4 5 6 7 8
9 214

8 113 213

7 210 510 18

6 19 29 39, 17 47

5 16 36 66 14

4 15 15 25 35, 13 45, 33

3 12 12 32 42

2 11 11 11 21 21

1 1−2 1−2 1−2 2−2 2−2, 1−5 1−5

Figure 1. Computer generated tables of HGCm,n in even codimensionn−m (left: n = m = 2,
right: n = m = 3) taken from [13], with the cancellations induced by the bracket with the line
graph marked. The rows indicate the number of hairs (↑), the columns the loop order (→). A
table entry 13 means that there the degree 3 subspace is one-dimensional.

1 2 3 4 5 6 7 8
9 18

8 17 17

7 18 16

6 16 16 16, 17

5 14 15 15, 17 25

4 13 15, 16 16

3 14 14

2 12 15

1 10 11 11 14 11 11, 14

1 2 3 4 5 6 7 8
9 16

8
7 15 15 25

6 12

5 12 22 32 52

4 11 11 1−1

3 11 11 21 21 31

2 1−2 1−2

1 1−2 1−2 1−2 2−2 2−2, 1−5 1−5

Figure 2. Computer generated tables of HGCm,n in odd codimension (left:n = 2, m= 1, right:
n = 3, m = 2) taken from [13], with the cancellations induced by the bracket with the tripod
graph marked.

j-colored hairs carrying cohomological degreemj . The complex HGCm1,...,mN;n splits according to the loop order
r and the number of hairs in each colork = (k1, . . . , kN). By similar considerations as above we then find a
spectral sequence (similarly associated to the filtration by defect) relating the decorated to the (colored) hairy
graph cohomology

H(GCr
HH

k
Ad
⊗Det⊗n)[rn − n] ⇒ HGCk,r

m1,...,mN;n,

whered = (n − m1 − 2, . . . , n − mN − 2) andAd is as in Subsection 3.2. As above, the commutative alge-
bra Ad is formal and may be replaced by its homologyA′d. The first term of the obtained spectral sequence is
H(GCr

HH
k
Ad
⊗Det⊗n

)[rn−n] and is also concentrated on two columns. Unfortunately, inthis case we cannot generally

computeHH(Ad), in contrast to theN = 1 situation.

7. Hairy graph-homology in the loop order r = 2

For the loop orderr = 2, the homology of the hairy graph-complexes HGCm,n were computed in [7]. Surpris-
ingly the computations were much harder in the case of even codimension, to which our paper is an explanation.
In fact our theorems 1 and 2 can can substantially simplify those computations especially in the difficult case of
odd codimension reducing it to the even case. First and a practical remark is that in the graph-complex GCr

F for
any homotopy coefficient systemF we can ignore the graphs with cut vertices. The proof is completely analogous

14



to the case of constant coefficients [4, Theorem 1.1] (see also [7, Theorem 3.1] where thisis proved for the hairy
graph-complexes). In the case of loop order 2 there is only one graph without cut vertices, which we denote byθ:

r r

.

In other words, we get
GC2

F ≃ (F∗ ⊗Or)Gθ ,

whereGθ = S3 × S2 is the group of symmetries ofθ. The sign factorOr is responsible for the permutation of
edges, thus it is the sign representation of the factorS3. One can also easily see that in this caseOr = Det. In
particular ifV is a finite dimensional Out(F2) representation concentrated in degree zero, one has

(28) H i(GC2
V) =






0, i , 3;

(V∗ ⊗ Det)Gθ , i = 3,

The cohomology is concentrated in degree 3, sinceθ has 3 edges and corresponds to a 3-dimensional orbicell of
OS2. From equation (28) one immediately gets

(29) H3(GC2
S2k−1H1

) = H3(GC2
Det⊗S2k−1H1

) = 0.

Indeed, the symmetry ofθ that preserves edges and flips the vertices acts as−1 onH1 and thus as (−1)2k−1 = −1
on S2k−1H1, while Det produces a positive sign. This in particular means that the splitting HGC2,hm,n = HGC2,h,I

m,n ⊕

HGC2,h,II
m,n of Theorem 1 is trivial in homology in the sense that one of thetwo terms of the splitting is always

acyclic. Computations made in [7], specifically its [7, Theorems 6.1 and 6.2], imply

(30) H3(GC2
S2kH1

) = K⌊
k
3 ⌋; H3(GC2

Det⊗S2kH1
) = K⌊

k
3 ⌋+1.

A similar situation takes place in odd codimension as well. The spectral sequence of Theorem 2 always abuts
at the first term forr = 2 as this termE1 always has only one non-trivial column. Indeed, Out(F2) = GL(2,Z)
and thus representationsBh

2 obviously factor through GL(2,Z) (contrary to the caser ≥ 3). Moreover, easy
computations show that

(31) B2k−1
2 ≃ SkH1 and B2k

2 ≃ Det⊗ Sk−1H1.

This together with (29) implies that one of the two columns inE1 is always zero. Theorem 2 together with (28-31)
recover the computations [7, Theorems 6.3 and 6.4] of the hairy graph-homology forr = 2 in the odd case.

8. Application to the deformation theory of the little discs operads

As we mentioned in the introduction, the hairy graph-complexes HGCm,n appear naturally in the relative de-
formation theory of the little discs operads. In this section we briefly recall how exactly they appear and also we
explain how our main results Theorems 1 and 2 are related and actually give a simpler proof to some earlier results
of the authors obtained in [25, 23] about the relative deformations of little discs operads in codimensions 0 and 1.

In this section we use freely the language of operads. A good introduction into the subject can be found in the
textbook [19], whose conventions we mostly follow.

We use the notationP{k} for thek-fold operadic desuspension. The operads governing commutative, associative
and Lie algebras are denoted byCom, Assoc andLie respectively. Then-Poisson operadPoisn governs (non-
unital) commutative algebras with an additional Lie bracket of degree 1− n, which is a derivation with respect to
the commutative product. It contains as a sub-operadsCom and the desuspended Lie operadLien := Lie{n− 1}.

For a coaugmented cooperadC we denote byΩ(C) its cobar construction, cf. [19, section 6.5]. IfP is a
quadratic Koszul operad, we denote its Koszul dual cooperadby P∨. In this case we often use the notationhoP
for the cobar construction of the Koszul dual, e.g.,

hoAss = Ω(Assoc∨) hoPoisn = Ω(Pois∨n ) hoLien = Ω(Lie∨n ) etc...

The quadratic operads considered above are well-known to beKoszul. One hasAssoc∨ = Assoc∗{1} (the cooperad
dual toAssoc operadically desuspended once);Com∨ = Lie∗{1}; Lie∨n = Com∗{n}; Pois∨n = Pois∗n{n}.

For any morphism of dg operadsP → Q, one can define the deformation complex Def(P → Q) which is the
complex of derivations of the composite mapP̂ → P → Q (whereP̂ → P is a cofibrant replacement ofP) shifted
in degree by one, so that it is endowed with a naturalL∞ structure [15, 19]. In casêP is a cobar construction of a
dg cooperad, the inducedL∞ structure is a dg Lie algebra structure.

By En we denote the operad of singular chains of the little discs operads. Its homology operad is the associative
operadAssoc if n = 1, and the operadPoisn if n > 1. It has been shown in [12, 23] that the natural inclusion
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Em→ En is rationally a formal map of operads if and only ifn−m, 1.8 Thus in casen−m, 1, the deformation
complex Def(Em→ En) is equivalent to the deformation complex of the induced mapof operads in homology. In
particular, in casen > m+ 1 > 2,

Def(Em→ En) ≃ Def(Poism
∗
−→ Poisn),

wherePoism
∗
−→ Poisn denotes the composite mapPoism→ Com → Poisn of the obvious projection followed by

an inclusion.
Kontsevich’s operadGraphsn (see [14]) is an operad whose space ofr-ary operationsGraphsn(r) consists of

linear combinations of isomorphism classes of graphs withr numbered “external” vertices and an arbitrary number
of unnumbered “internal” vertices. These graphs are required to satisfy the additional conditions:

• All internal vertices have at least valence 3.
• Each connected component contains at least one external vertex.

The following picture shows an examples of such an admissible graph.

1 2 3 4

The cohomological degree of a graphΓ is the number

n(#(internal vertices)− 1)− (n− 1)#(edges).

For more details, signs, and the definition of the differential and the operad structure we refer the reader to [15,
16, 23].

The key result is that the operadGraphsn forms a model for the homology operad of the littlen-disks operad
for n ≥ 2.

Theorem 4(Kontsevich [14], Lambrechts-Volić [16]). There is a quasi-isomorphism of operadsPoisn→ Graphsn

for all n ∈ Z.

We may now consider the deformation complex

(32) Def(hoPoism
∗
−→ Graphsn),

where the map to be deformed is the composition

hoPoism→ Poism→ Com→ Graphsn.

Concretely, as a graded vector space the above deformation complex is isomorphic to

Def(hoPoism
∗
−→ Graphsn) �

∏

r≥1

HomSr (Pois∗m{m}(r),Graphsn(r)).

One defines the sub-complex

(33) fHGCm,n ⊂ Def(hoPoism
∗
−→ Graphsn)

to be spanned by maps that satisfy the following two conditions:

• The image is a series of graphs all of whose external verticesare univalent.
• The map factors throughPois∗m{m} → Com∗{m}.

Elements of fHGCm,n are naturally identified with series of (not necessarily connected) “hairy” graphs as depicted
in (1). The cohomological degree of such a graph is computed as the number

n#(internal vertices)− (n− 1)#(edges)+m(#(hairs)− 1).

We cite the following result from the literature.

Theorem 5([1], [23]). The inclusion(33) is a quasi-isomorphism.

8See also [16], where this result has been established earlier for a weaker range of dimensions.
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Any hairy graph is naturally a union of its connected pieces.Hence we may identify fHGCm,n with the com-
pleted symmetric product space of the connected subcomplex

HGCm,n ⊂ fHGCm,n = S+
(

HGCm,n[−m]
)

[m].

(The sign+ in S+ means that the degree zero term is omitted.) Finally, let us note that the deformation complex
(32) above is naturally a dg Lie algebra, and the subspaces

HGCm,n ⊂ fHGCm,n ⊂ Def(hoPoism
∗
−→ Graphsn)

are closed under the Lie bracket, so that the spaces HGCm,n and fHGCm,n carry natural dg Lie algebra structures.
The Lie bracket in question is described by (15), see [23].

8.1. Little discs deformations in codimensions 0 and 1.As we explained above, because of the relative formal-
ity of the little discs operads in codimensionn − m > 1, for any fieldK of characteristic zero, the deformation
complex Def(Em → En) is quasi-isomorphic to fHGCm,n = S+

(

HGCm,n[−m]
)

[m]. Recall Theorem 3 which de-
scribes the loop orders zero and one of the hairy graph-homology H(HGCm,n). Theorems 1 and 2 deal with the
loop orderr ≥ 2 of the hairy graph-homology. These two theorems are respectively related to the two results [25,
Theorem 1.3] and [23, Theorem 4] obtained earlier by the authors:

Theorem 6(Willwacher [25]). For n ≥ 2,
(34)

H(Def(En
id
−→ En)) ≃ H(Def(Poisn

id
−→ Poisn)) = S+




K[−n− 1] ⊕ Vn[−n− 1] ⊕

∏

r≥2

H(GCr
Det⊗n)[nr − n− 1]




[n],

whereK[−n− 1] is a one-dimensional space spanned by the only class in loop order zero; Vn stands for the space
of classes of loop order one (so called wheels):

(35) Vn =
⊕

j≥1
j≡2n+1 mod 4

K[n− j];

the rest is the product whose r-th term describes the homology of loop order r.

Willwacher proves the above theorem by showing that the deformation complex Def(Poisn
id
−→ Poisn) is equiv-

alent to the full hairy graph-complex fHGCn,n with deformation being the initial differential (sum of expansions
of internal vertices) plus the bracket with the line graphL. This perturbation on the level of generators does not
change the homology in loop order zero and one, but in loop order r ≥ 2 it kills all the repeated terms described
by Theorem 1, leaving only the part of the homology arising from HGCr,1,II

n,n .

Theorem 7(Turchin and Willwacher [23]). For n ≥ 2,

(36) H(Def(En−1→ En)) ≃ S+



K[−n] ⊕ Vn[−n] ⊕

∏

r≥2

H(GCr
Det⊗n)[nr − n]




[n− 1],

whereK[−n] is a one-dimensional space spanned by the only class (the tripod T) in loop order zero; Vn stands for
the space of classes of loop order one(35); the rest is the product whose r-th term describes the homology of loop
order r.

Again the proof is obtained by showing that Def(En−1 → En) is quasi-isomorphic to fHGCn−1,n with the
differential perturbed by a certain Maurer-Cartan element which contains as a summand the tripod graphT. This
explains why on the level of generators in loop orderr ≥ 2 all the repeated terms described by Theorem 2 are
killed. (Theorem 2 could simplify or rather enlighten the proof of Theorem 7 given in [23], where we used a
different combinatorial approach to tackle this problem.) We also warn the reader that strictly speaking the loop
order in Def(En−1 → En) is defined only as a filtration as the Maurer-Cartan element in question might have
graphs of a positive loop order. The fact that one gets a non-trivial cancellation in the deformation homology was
used in [23] to prove that the map of operadsEn−1→ En is not formal.

8.2. Relative versus target deformations.One could consider the natural map

(37) Def(En
id
−→ En)→ Def(Em→ En)

and the induced map in homology. In other words the question is to describe how the deformations of the target
can be seen as a part of relative deformations of the little discs operads.

The hardest case is when the mapEm → En is not formal, i.e. whenm = n− 1. In this case the authors gave
a partial answer [23, Theorem 2] which states that under the map (37), the space of generators of (34) under the
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cup product is sent isomorphically to the space of generators of (36).9 We also believe, but were not able to prove,
that the elements obtained by taking cup product in (34) (symmetric powers of order≥ 2) are sent to zero.

Theorems 1-2 help to solve this problem in the easy casen−m≥ 2.

Theorem 8. For n−m≥ 2, the map

(38) H(Def(En
id
−→ En))→ H(Def(Em→ En))

sends

• the only loop order zero generator of(34) to zero;

• the loop order one generators to zero except the 1-wheel, which is sent to the graph-cycle (this
happens when n is even, otherwise all 1-loop classes with no exception are sent to zero);

• all the loop order≥ 2 generators of(34) isomorphically to the corresponding piece of the homology of
HGCr,1,II

m,n ;10

• all the elements obtained by taking a cup-product (i.e. elements from any symmetric power of order≥ 2)
to zero.

Proof. Because of the relative formality result it is enough to study the map

(39) Def(Poisn
id
−→ Poisn)→ Def(Poism

∗
−→ Poisn).

(In fact for m = 1 we need to consider the operadAssoc instead ofPois1, but the argument given below will still

work as Def(Assoc
∗
−→ Poisn) is also equivalent to the full hairy graph-complex fHGC1,n, see [22].) Since the map

Poism
∗
−→ Poisn factors through the commutative operadCom, the map (39) can itself be viewed as a composition

(40) Def(Poisn
id
−→ Poisn)→ Def(Com→ Poisn)→ Def(Poism

∗
−→ Poisn).

The complex Def(Com → Poisn) is modeled by the complex of derivations of the maphoCom
∗
−→ Graphsn with

the latter one by a similar argument quasi-isomorphic to thesubcomplex of HGCm,n ⊂ fHGCm,n spanned by the
graphs with only one hair. This subcomplex

∏

r≥1 HGCr,1
m,n does not depend onm and will be denoted by HGC1n.

The second map in (40) is thus modeled by the inclusion HGC1
n →֒ fHGCm,n. On the other hand, the complex

Def(Poisn
id
−→ Poisn) is modeled by the complex of derivations of the quasi-isomorphismhoPoisn

≃
−→ Graphsn,

which according to [25] is quasi-isomorphic to HGCL
n,n – the hairy graph-complex HGCn,n with the differential

deformed by the Maurer-Cartan elementL. One has that the square

(41) fHGCL
n,n

≃
//

��

Def(hoPoisn
≃
−→ Graphsn)

��

HGC1
n

≃
// Def(hoCom

∗
−→ Graphsn)

commutes. Thus the first map in (40) is modeled by the projection

fHGCL
n,n→ HGC1

n,

sending all graphs with≥ 2 hairs to zero and the graphs with exactly one hair to themselves. From this explicit
description of the map (37) as the composition

fHGCL
n,n→ HGC1

n→ fHGCm,n

the result easily follows. �

Remark 4. One can also ask how the deformations of the source are seen inthe relative deformations of the little
discs operads or in other words one can look at the induced mapin the homology of the natural map

Def(Em
id
−→ Em)→ Def(Em→ En).

In case of codimensionn − m ≥ 2 this map is trivial as it factors through Def(Em
∗
−→ Com) which has trivial

homology.

9In other words, theEn−1 deformations are rigid within theEn structure being all induced by theEn deformations. We call this fact
algebraic Cerf lemmain [23].

10Notice that the complex HGCr,1m,n does not depend onm, and thus the splitting of Theorem 1 HGCr,1
m,n = HGCr,1,I

m,n ⊕HGCr,1,I I
m,n takes place

for the odd codimension as well. In terms of graphs, the map (38) sends a bald graph to the sum of graphs obtained by attaching a hair in one
of its vertices.
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9. Application: Serre fibrations whose fiber is a wedge of circles

Lemma 1 about the splitting of the coefficient systemC• � K ⊕ C̃• is related to a curious topological phenom-
enon that the analogue of the Euler class for fibrations of wedges of≥ 2 circles is always rationally trivial and as
a consequence we prove that the following result holds.

Theorem 9. The rational (co)homology Serre spectral sequence associated to any Serre fibration whose fiber is
homotopy equivalent to a wedge of r≥ 2 circles abuts at the second page.

We start with the following lemma. The proof of the theorem isgiven in Subsection 9.2.

Lemma 2. For any r ≥ 2, all the components of the monoid G(∨rS1) of self homotopy equivalences of∨rS1 are
weakly contractible andπ0G(∨rS1) = Out(Fr ).

Proof. Consider the Serre fibration

(42) G(∨rS
1)→ ∨rS

1,

obtained by taking the image of the base point. Its fiber is themonoidG∗(∨rS1) of pointed self-homotopy equiv-
alences. The latter space has all components contractible as this is true forΩ(∨rS1). Thus,G∗(∨rS1) ≃ Aut(Fr).
The homotopy fiber of the mapG∗(∨rS1) → G(∨rS1) is Ω(∨rS1) ≃ Fr by the general properties of fibration
sequences. On the other hand, forr ≥ 2, the mapFr → Aut(Fr ) (each elementx is sent to the conjugation byx)
is injective, thus its fiber (which is equivalent toΩG(∨rS1) from our fibration sequence) is contractible. Thus the
connected component of the identity (and therefore every component ofG(∨rS1) since itsπ0 is a group) is weakly
contractible. From the long exact sequence for fibration (42), we getπ0G(∨rS1) = Out(Fr ) andπiG(∨rS1) = 0 for
i ≥ 1. �

9.1. Analogue of the Euler class.Recall that for a Serre fibrationF → E → B whose fiberF is a circle, the
Euler classe ∈ H2(B,H1(F)) is defined as the obstruction to the existence of a section.In fact it is an obstruction
of extension of a section from the 1-skeleton ofB to its 2-skeleton. (It does not depend on the choice of the
section over the 1-skeleton.) In caseF ≃ ∨rS1 the obstruction of a section can be similarly defined as a certain
classer ∈ H2(B,H1(F)). In particular if a section exists, then this class is zero. More generally for any ringK
of coefficients and assuming that B is a regularCW complex, if for any cell ofB one can find a formalK linear
combination

∑

i αi si , with
∑

i αi = 1, of sectionssi which glue together compatibly on the boundary, then the
imageeK

r of this class inH2(B,H1(F,K)) must also be zero. We call such an object aK-linear section. In case
K = Q we call it also a rational section.

Theorem 10. For any Serre fibration F→ E → B with F homotopy equivalent to a wedge of r≥ 2 circles, the
class eQr ∈ H2(B,H1(F,Q)) is trivial.

Proof. Serre fibrationsF → E → B with fiber F ≃ ∨rS1 are classified by mapsf : B → BG(∨rS1), where,
for r ≥ 2, the latter space is equivalent toBOut(Fr ) by Lemma 2. The obstruction classeQ

r for F → E → B is
the pullback of the analogous class that we denote byer of the canonical∨rS1 bundle overBOut(Fr ). Thus it is
enough to show thateQ

r is trivial.
Rationally, instead ofBOutFr one can use the orbispace OSr – the moduli space of graphs. Whilst the role of

the canonical∨rS1 fibration is played by the Serre orbifibrationπS : WOSr → OSr , whereWOSr is the space of
pairs (Γ, x) with Γ a metric graph in OSr andx a point inΓ/GΓ (hereGΓ is as before the group of symmetries ofΓ).
It is a Serre orbifibration in the sense that it is obtained as the quotient by the Out(Fr) of the actual Serre fibration
π : WOr → Or , where similarlyWOr is the space of pairs – a graphΓ in Or (i.e. a graph together with a class of a
homotopy equivalence∨rS1 → Γ) and a pointx in Γ. The spaceWOr has an obvious Out(Fr) action, such thatπ
is Out(Fr)-equivariant and one getsWOr/Out(Fr ) =WOSr .

The orbifibrationπS admits a rational orbi-section assigning to an elementΓ ∈ OSr a linear combination of the
vertices ofΓ (as in the proof of Lemma 1):

∑

v∈VΓ

|v| − 2
2r − 2

v.

(Again it is an orbi-section in the sense that it is obtained from an Out(Fr )-equivariant section ofπ, given by the
same formula.)

�

Remark 5. In fact we can avoid the “orbi-langauge” in the proof by considering instead ofπS the actual Serre
fibration

(WOr × EOut(Fr ))/Out(Fr )→ (Or × EOut(Fr))/Out(Fr ),
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whereEOut(Fr ) is a weakly contractible space with a free Out(Fr ) action such that its quotient by Out(Fr ) is
BOut(Fr ). The fibers of the map above are again metric graphs, thus a rational section can be defined similarly.

9.2. Proof of Theorem 9. Consider the Serre rational cohomology spectral sequence for a fibrationF → E→ B
with F ≃ ∨rS1, r ≥ 2. Its second termEp,q

2 = Hp(B,Hq(F,Q)) is concentrated on two horizontal linesq = 0 and 1.
The differentiald2 : Hp(B,H1(F,Q))→ Hp+2(B,H0(F,Q)) is the composition

Hp(B,H1(F,Q))
eQ

r ∪(−)
−−−−−→ Hp+2(B,H1(F,Q) ⊗ H1(F,Q))→ Hp+2(B,Q) = Hp+2(B,H0(F,Q)),

where the first map is the cup-product with the analogue of theEuler class considered in the previous subsection,
and the second map is induced by the obvious homomorphism of the coefficient systems. By Theorem 10,eQ

r = 0,
and thusd2 = 0. All otherdi, i ≥ 3, are trivial by dimensional reason.
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[21] Paul-Arnaud Songhafouo Tsopméné and Victor Turchin. Hodge decomposition in the rational homology and homotopyof high dimen-

sional string links. arXiv:1504.00896, 2015.
[22] Victor Turchin. Hodge-type decomposition in the homology of long knots.J. Topol., 3(3):487–534, 2010.
[23] Victor Turchin and Thomas Willwacher. Relative (non-)formality of the little cubes operads and the algebraic CerfLemma,

arXiv:1409.0163, 2014.
[24] Victor Turchin and Thomas Willwacher. Hochschild-Pirashvili homology on suspensions and representations of Out(Fn),

arXiv:1507.08483, 2015.
[25] Thomas Willwacher. M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra,Invent. Math., 200 (2015), no. 3,

671–760.

Department ofMathematics, Kansas State University, 138 Cardwell Hall, Manhatan, KS 66506, USA
E-mail address: turchin@ksu.edu

Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
E-mail address: thomas.willwacher@math.uzh.ch

20

http://arxiv.org/abs/1303.3255
http://arxiv.org/abs/1503.08699
http://arxiv.org/abs/1508.01281
http://arxiv.org/abs/0808.0457
http://arxiv.org/abs/1504.00896
http://arxiv.org/abs/1409.0163
http://arxiv.org/abs/1507.08483

	1. Introduction
	Structure of the paper
	Acknowledgements

	2. Notation
	3. Recollection: Higher Hochschild Homology
	3.1. More explicit formulas for graphs
	3.2. Our main examples
	3.3. Recollection: Hochschild-Pirashvili homology of Ad

	4. Outer space and ``decorated'' graph complexes
	4.1. Outer space and coefficient systems
	4.2. Decorated graph complexes
	4.3. Hairy graph complexes – Standard definition
	4.4. Hairy graph complexes as decorated graph complexes

	5. Proof of Theorem ??
	6. Proof of Theorem ??
	6.1. Consequences and discussion
	6.2. Remark: String links and a ``colored'' variant

	7. Hairy graph-homology in the loop order r=2
	8. Application to the deformation theory of the little discs operads
	8.1. Little discs deformations in codimensions 0 and 1
	8.2. Relative versus target deformations

	9. Application: Serre fibrations whose fiber is a wedge of circles
	9.1. Analogue of the Euler class
	9.2. Proof of Theorem ??

	References

